${ }^{19}$ F Nuclear Magnetic Resonance Studies of Aromatic Compounds. Part I. The Effect of Solvents on the Chemical Shift of Fluorine Nuclei in para-Substituted Fluorobenzenes, 4-Substituted 4'-Fluoro-trans-stilbenes, and 4-Substituted 3^{\prime}-Fluoro-trans-stilbenes

Abstract

By 1. R. Ager and L. Phillips,* Organic Chemistry Department, Imperial College of Science and Technology, London SW7 2AY

Solvent effects upon ${ }^{19} \mathrm{~F}$ shielding in some aryl fluorides are examined. A criterion is established which, it is believed, enables solvents and reference to be chosen so that interactions other than those due to 'reaction fields" are minimised. The reaction field model appears to work satisfactorily for 4 -substituted 3^{\prime} - and 4'-fluoro-transstilbenes, but breaks down for para-substituted fluorobenzenes.

The effects of solvent variation upon nuclear shielding parameters have been much investigated. ${ }^{1}$ It was concluded that the observed shielding constant of a nucleus in a molecule dissolved in a solvent can be considered as the sum of several contributions. ${ }^{2}$ If $\sigma_{\text {obs }}$ is the observed slielding constant then equation (1) follows,

$$
\begin{equation*}
\sigma_{\mathrm{pb},}=\sigma_{\mathrm{g}}+\sigma_{\mathrm{B}}+\sigma_{\mathrm{A}}+\sigma_{W}+\sigma_{\mathrm{E}}+\sigma_{\mathrm{C}} \tag{1}
\end{equation*}
$$

where σ_{g} is the shielding constant of a nucleus in an isolated molecule, σ_{B} is the contribution to shielding arising from the bulk magnetic susceptibility of the solvent, σ_{W} arises from any anisotropy in the solvent's magnetic susceptibility, and σ_{W} arises from van der Waals interactions between solute and solvent molecules. The term σ_{E} is important only for polar solute molecules, which polarise the surrounding medium and give rise to a reaction field in the solvent, ${ }^{3}$ and σ_{C} is a contribution to shielding from specific molecular interaction or complex formation in solution. The chemical shift measured on a liquid sample is [$\sigma_{\text {obs }}$ (sample) $-\sigma_{\text {obs }}$ (reference)] and this will be equal to the difference $\left[\sigma_{\underline{g}}(\right.$ sample $)-$ $\sigma_{y}($ reference $\left.)\right]$ only when each of the terms in equation (i) is identical for both sample and reference. It is important that the observed shift difference should be as close as possible to the difference $\left[\sigma_{\mathrm{g}}\right.$ (sample) $\sigma_{\mathrm{g}}($ reference $)$] if any real attempt is to be made to interpret chemical shifts in terms of fundamental molecular properties.

Emsley and Phillips ${ }^{4}$ have investigated the effects of solvents upon ${ }^{19} \mathrm{~F}$ shielding in a variety of aromatic fluorine-containing molecules. Where the solute and reference are present in the same solvent and closely resemble each other (both chemically and in terms of their physical dimensions), then the only term which is likely to cause the observed chemical shift to differ significantly from $\left[\sigma_{g}\right.$ (sample) $-\sigma_{g}($ reference $\left.)\right]$ arises from differences in σ_{E}. This term is important for polar molecules and arises because of induced polarisation of the surrounding medium; the 'reaction' field thus set up polarises the electrons in the $\mathrm{C}-\mathrm{F}$ bond and causes a contribution to the observed shielding. To a first

[^0]approximation, σ_{E} may be expressed as being simply proportional to the magnitude of the induced field along the bond direction, as in equation (2), where A is the
\[

$$
\begin{equation*}
\sigma_{\mathrm{E}}=-A E_{Z} \tag{2}
\end{equation*}
$$

\]

proportionality constant, and E_{Z} is the component of the reaction field along the bond in the direction $\mathrm{C} \longrightarrow \mathrm{F}$.
The constant A is a measure of the ease of distortion of the electron distribution along the $\mathrm{C}-\mathrm{F}$ bond direction, and for the CF bonds in CHF_{3} has been shown ${ }^{5}$ to have a value of $-(\mathbf{9 . 9} \pm \mathbf{3 . 6}) \times 10^{-12}$ e.s.u. It may be important in describing the nature of such a bond, but few attempts have been made to measure its value accurately. Emsley and Phillips ${ }^{4}$ obtained values of A for C-F bonds in derivatives of pentafluoropyridine and pentafluorobenzene and in some para-substituted fluorobenzenes; the results in many cases however were made inaccurate by contributions to the solvent effect from the ill-defined $\sigma_{\mathcal{O}}$ term. A surprising observation made in this work is that the sign of A appears to be positive in some species but negative in others and may vary for different $\mathrm{C}-\mathrm{F}$ bonds in the same molecule. The object of the present work was to make a more accurate evaluation of A for $\mathrm{C}-\mathrm{F}$ bonds in some simple aromatic systems and to investigate the possible variation of its magnitude and sign with structure.
As part of a general study upon substituent effects on ${ }^{19} \mathrm{~F}$ shielding in monofluorinated aromatic molecules, series of para-substituted fluorobenzenes, 4 -substituted 4^{\prime}-fluoro-trans-stilbenes, and 4 -substituted $\mathbf{3}^{\prime}$-fluoro-trans-stilbenes were available. ${ }^{6}$ These molecules were chosen for the solvent effect study.

EXPERIMENTAL

Stilbene derivatives were synthesised according to the methods described in the following paper. Their purity was checked by spectroscopy and by analysis. paraSubstituted fluorobenzenes were used as obtained from Koch-Light. Solvents were AnalaR grade for carbon tetrachloride and chloroform, and General Purpose Reagents in other cases.

Fluorine N.m.r. Spectra.-These were recorded on a

[^1]Varian HAl00 spectrometer operating at $94 \cdot 1 \mathrm{MHz}$. Fieldfrequency locked conditions were used throughout, with extended lock and automatic phase compensation to enable spectral lines up to 20 kHz from the locking signal to be recorded in the absorption mode. ${ }^{7}$ Chemical shifts were measured as the difference between the resonance frequency of the reference (internal hexafluorobenzene) and the sample by means of a frequency counter accurate to $\pm 0 \cdot 1 \mathrm{~Hz}$. Chemical shifts were measured for a variety of solutions containing low concentrations of solute and the results extrapolated to infinite dilution; the 'infinite dilution chemical shifts' are considered to be accurate to within $\pm 1.0 \mathrm{~Hz}$ or ± 0.01 p.p.m. Values are in Table 1.
cavity in the solvent sufficiently large to contain the molecule; n is the refractive index of the solute; ε is the dielectric coefficient of the solvent; and S_{a} is a shape factor given by equation (5). Expression of equation (3)

$$
\begin{align*}
E & =\frac{3 \mu}{a b c} S_{\mathrm{a}} \frac{\left[1+\left(n^{2}-1\right) S_{\mathrm{a}}\right](\varepsilon-1)}{\varepsilon+\left[n^{2} S_{\mathrm{a}} /\left(1-S_{\mathrm{a}}\right)\right]} \tag{4}\\
S_{\mathrm{a}} & =\frac{a b c}{2} \int_{0}^{\infty} \frac{\mathrm{d} \lambda}{\left(a^{2}+\lambda\right)^{\frac{3}{2}}\left(b^{2}+\lambda\right)^{\frac{1}{2}}\left(c^{2}+\lambda\right)^{\frac{1}{2}}} \tag{5}
\end{align*}
$$

in terms of equation (4) leads to the conclusion that $\Delta_{\text {obs }}$ for any solute should be a linear function of $(\varepsilon-1) /\{\varepsilon+$ $\left.\left[n^{2} S_{a} /\left(1-S_{a}\right)\right]\right\}$ if it is measured in a variety of solvents

Table 1
${ }^{19} \mathrm{~F}$ Chemical shifts (p.p.m. referred to $\mathrm{C}_{6} \mathrm{~F}_{6}$ internal reference, negative shifts to low field) for some aromatic fluorine-containing compounds in a variety of solvents

$\begin{gathered} \mathrm{X} \\ p \text {-X-Fluord } \end{gathered}$	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$ nes	CCl_{4}	CHCl_{3}	CHBr_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{2} \mathrm{I}_{2}$	MeCN	$\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}$
NMe_{2}	$-35 \cdot 86$							
NH_{2}	-35.94	-35.48	-35.01	-34.66		$-34 \cdot 26$	$-34 \cdot 17$	
OH^{2}	-38.46	-37.99	-36.68	$-37 \cdot 18$		-36.83	$-37 \cdot 19$	
OMe	-38.48	-38.00	$-37 \cdot 48$	$-37 \cdot 06$			-38.23	
Me	-44.61	-44.07	$-43 \cdot 14$	-42.89		$-42 \cdot 70$	$-44 \cdot 13$	
H	-50.08	-49.51	-48.75	-48.41		$-48 \cdot 12$	-49.56	$-49 \cdot 90$
F	-43.18	$-42 \cdot 68$	$-42 \cdot 16$	-41.74		$-41 \cdot 51$	$-43 \cdot 32$	
Cl	-46.78	-46.31	$-45 \cdot 85$	$-45 \cdot 46$		$-45 \cdot 28$	-46.99	
Br	-47.35	-46.89	-46.45	-46.05		-45.88	-47.52	
I	-48.32	-47.85	-47.39	-47.02		-46.90	-48.32	
NO_{2}	-58.87	-58.77	-59.70	$-59 \cdot 10$		-58.72	-59.89	
${ }^{+} \mathrm{NMe}_{3}$							-52.58	-51.73
4-X-3'-Fluoro-trans-stilbenes								
NH_{2}	-49.04	$-48 \cdot 51$	-48.04	$-47 \cdot 62$		$-47 \cdot 49$	$-49 \cdot 06$	
OH^{2}		-48.75	-48.18	-47.86		$-47 \cdot 68$	$-49 \cdot 17$	
OMe	$-49 \cdot 26$	-48.71	$-48 \cdot 19$	-47.83		$-47 \cdot 65$	-49.21	
OEt	$-49 \cdot 26$	-48.67	$-48 \cdot 15$	-47.80		$-47 \cdot 62$	$-49 \cdot 19$	
Me	-49.38	-48.79	-48.21	-47.87		-47.72	-49.28	
H	-49.52	-48.89	-48.33	-47.96		$-47 \cdot 79$	$-49 \cdot 31$	
F	-49.65	$-49 \cdot 07$	-48.40	$-48 \cdot 06$			$-49 \cdot 34$	
Cl	-49.79	$-49 \cdot 18$	-48.50	$-48 \cdot 17$		-48.01	$-49 \cdot 41$	
Br	$-49 \cdot 80$	$-49 \cdot 19$	-48.53	$-48 \cdot 17$		-48.00	-49.43	
I	$-49 \cdot 82$	$-49 \cdot 18$	-48.53	$-48 \cdot 20$		-47.99	$-49 \cdot 44$	
NO_{2}	-50.61	$-49 \cdot 76$	$-49 \cdot 02$	-48.69		-48.48	$-49 \cdot 67$	

4-X-4'-Fluoro-trans-stilbenes

NMe_{2}	-46.98	
NH_{2}	$-47 \cdot 27$	-46.79
Me	-48.21	-47.71
H	-48.58	-48.09
I	-49.34	-48.86
NO_{2}	-50.96	-50.53
$+\mathrm{NMe}_{3}$		

$-46 \cdot 43$	-46.99	-47.42
$-47 \cdot 30$	-48.05	$-48 \cdot 24$
-47.65	-48.37	-48.54
$-48 \cdot 20$	-48.86	$-49 \cdot 00$
$-49 \cdot 65$	-50.08	-50.26
	-49.60	$-49 \cdot 60$

Method of Calculation.- If each of the terms in equation (1) due to solvent interaction is the same for both solute and reference, with the exception of σ_{E}, then the chemical-shift difference between the two is given by equation (3). σ_{E} is

$$
\begin{align*}
& \Delta_{\mathrm{obs}}= {\left[\sigma_{\mathrm{g}}(\text { sample })-\sigma_{\mathrm{g}}(\text { reference })\right]+} \tag{3}\\
& {\left[\sigma_{\mathrm{E}}(\text { sample })-\sigma_{\mathrm{E}}(\text { reference })\right] }
\end{align*}
$$

given approximately by equation (2), in which E_{Z} can be calculated by Diehl and Freeman's modification ${ }^{8}$ of Buckingham's method ${ }^{3}$ which considers only the contribution from molecular dipoles and uses the Onsager model for the reaction field. This gives for the reaction field E the expression (4) where μ is the dipole moment of the molecule; a, b, and c are the half-axes of an ellipsoidal

[^2]and the solvent effect is indeed due to the reaction field. The value of A can be determined from the slope of the correlation line.

For molecules of similar size and shape to hexafluorobenzene, the shape factor S_{a} has been evaluated ${ }^{1}$ as $\mathbf{0 . 2 4}$ which leads to a useful form (6) of the dielectric function for such systems. For an elongated molecule such as trans-

$$
\begin{equation*}
D . F_{\cdot(\text { benzenes })}=\frac{\varepsilon-1}{\varepsilon+0 \cdot 789} \tag{6}
\end{equation*}
$$

stilbene a different value of S_{a} is required and if an ellipsoidal cavity of dimensions $a=7.35 \AA, b=3.55 \AA$, and $c=1.85 \AA$ is assumed, S_{a} is found to be 0.116 . For this case the dielectric function becomes (7).

$$
\begin{equation*}
\text { D.F } \text {.(stilbeses) }=\frac{\varepsilon-1}{\varepsilon+0.329} \tag{7}
\end{equation*}
$$

If $\Delta^{x_{\text {obs }}}$ is the substituent chemical shift for a molecule in which the substituent group is X (referred to the unsubstituted molecule, $\mathrm{X}=\mathrm{H}$), equation (3) can be written as (8). If A is constant, $A_{\mathrm{H}}=A_{\mathrm{X}}$; substitution of the

$$
\begin{align*}
\Delta_{\mathrm{obs}}^{\mathrm{x}}= & \Delta^{\mathrm{x}_{\mathrm{g}}}+ \\
& \frac{3 S_{\mathrm{a}}\left[1+\left(n^{2}-1\right) S_{\mathrm{a}}\right](\mathrm{D} . \mathrm{F} .)\left(A_{\mathrm{H}, \mu_{\mathrm{H}}}-A_{\mathrm{X}} \mu_{\mathrm{X}}\right)}{a b c} \tag{8}
\end{align*}
$$

appropriate values for n^{2} (assumed constant, and given the value $2 \cdot 5$), S_{a}, and a, b, and c gives the expressions (9) and (10).

$$
\begin{align*}
& \Delta^{\mathrm{X}} \text { obs } \text { (stilbenes) } \\
& =8.4888 \times 10^{3} A\left(\mu_{\mathrm{H}}-\mu_{\mathrm{X}}\right)(\text { D.F. })+\Delta^{\mathrm{X}} \mathrm{~g}_{\mathrm{g}} \tag{9}\\
& \Delta^{\mathrm{X}}{ }_{\text {ohs }} \text { (benzenes) } \\
& =3 \cdot 2428 \times 10^{4} A\left(\mu_{\mathrm{H}}-\mu_{\mathrm{X}}\right)(\mathrm{D} . \mathrm{F} .)+\Delta_{\mathrm{X}}^{\mathrm{X}} \tag{10}
\end{align*}
$$

If the variation of $\Delta^{X_{o b s}}$ with solvent (D.F.) is observed, then A can easily be evaluated from equations (9) and (10).

RESULTS AND DISCUSSION

A major problem which arose in the course of earlier work is the incomplete elimination of solvent contributions to the observed shifts other than σ_{E}; a high
which all interactions are minimal should be chosen; an inert non-polar, non-polarisable solvent is required for this purpose, and n-hexane seems ideal.

It was decided to examine the series of molecules (I)-(III) in a variety of solvents, and to refer all

(I)

(II)

chemical shifts to the member of each series in which $\mathrm{X}=\mathrm{H}$. These ' substituent chemical shifts' (s.c.s. $=\Delta$) are most likely to be free from undesired solvent contributions due to the terms σ_{B}, σ_{A}, and σ_{W} but will certainly contain the σ_{E} term and possibly σ_{C}. It seems reasonable to suggest, however, that if the infinite dilution s.c.s. in a given solvent correlates linearly with high precision with the corresponding s.c.s. in n-hexane the solvent-solute system is also free from chemical-type

Table 2
${ }^{19} \mathrm{~F}$ Substituent chemical shifts (p.p.m. referred to $\mathrm{X}=\mathrm{H}$) for some aromatic fluorine-containing compounds in a variety of solvents. Positive s.c.s. are to high field of reference

X	$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$	CCl_{4}	CHCl_{3}	CHBr_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{2} \mathrm{I}_{2}$	MeCN	$\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}$
$p-\mathrm{X}-\mathrm{Fluorobenzenes}$								
NMe_{2}	$14 \cdot 22$							
NH_{2}	$14 \cdot 14$	14.03	$13 \cdot 74$	$13 \cdot 75$		13.86	$15 \cdot 39$	
OH	11.62	11.52	12.07	11.23		11.29	$12 \cdot 37$	
OMe	11.60	11.51	11.27	$11 \cdot 35$			$11 \cdot 33$	
Me	$5 \cdot 47$	$5 \cdot 44$	$5 \cdot 61$	$5 \cdot 52$		$5 \cdot 42$	$5 \cdot 43$	
H	$0 \cdot 00$	0.00	$0 \cdot 00$	$0 \cdot 00$		$0 \cdot 00$	$0 \cdot 00$	$0 \cdot 00$
F	6.90	$6 \cdot 83$	6.59	$6 \cdot 67$		6.61	6.24	
Cl	$3 \cdot 30$	$3 \cdot 20$	$2 \cdot 90$	$2 \cdot 95$		$2 \cdot 84$	$2 \cdot 57$	
Br	$2 \cdot 73$	$2 \cdot 62$	$2 \cdot 30$	$2 \cdot 36$		$2 \cdot 24$	$2 \cdot 04$	
I	1.76	$1 \cdot 66$	$1 \cdot 36$	$1 \cdot 36$		1.22	$1 \cdot 24$	
	-8.79	-9.26	-10.95	-10.69		-10.60	$-10 \cdot 33$	
$+\mathrm{NMe}_{3}$							-3.02	-1.83
4-X-3'-Fluoro-trans-stilbenes								
NH_{2}	0.48	0.38	$0 \cdot 29$	$0 \cdot 34$		$0 \cdot 30$	$0 \cdot 25$	
OH		$0 \cdot 14$	$0 \cdot 15$	$0 \cdot 10$		$0 \cdot 11$	$0 \cdot 14$	
OMe	$0 \cdot 26$	$0 \cdot 18$	$0 \cdot 14$	$0 \cdot 13$		$0 \cdot 14$	$0 \cdot 10$	
OEt	$0 \cdot 26$	$0 \cdot 22$	$0 \cdot 18$	$0 \cdot 16$		$0 \cdot 17$	$0 \cdot 12$	
Me	$0 \cdot 14$	$0 \cdot 10$	$0 \cdot 12$	0.09		0.07	0.03	
H	$0 \cdot 00$	0.00	0.00	0.00		0.00	0.00	
F	-0.13	-0.18	-0.07	-0.10			-0.03	
Cl	-0.27	-0.29	-0.17	-0.21		-0.22	-0.10	
Br	-0.28	-0.30	-0.20	-0.21		-0.21	-0.12	
I	-0.30	-0.29	-0.20	-0.24		-0.20	-0.13	
NO_{2}	-1.09	-0.87	-0.69	-0.73		-0.69	-0.36	
4-X-4'-Fluoro-trans-stilbenes								
	1.60							
NH_{2}	$1 \cdot 31$	$1 \cdot 30$	$1 \cdot 13$		$1 \cdot 22$		$1 \cdot 38$	$1 \cdot 12$
Me	$0 \cdot 37$	$0 \cdot 38$	$0 \cdot 34$		$0 \cdot 35$		0.32	
H	0.00	0.00	0.00		$0 \cdot 00$		$0 \cdot 00$	0.00
I	-0.76	-0.77						
NO_{2} $+\mathrm{NMP}_{3}$	-2.38	-2.44	$-2 \cdot 26$		-2.00		-1.71	
${ }^{+} \mathrm{NMe}_{3}$								-1.06

degree of scatter occurs in the plots of $\Delta_{\text {obs }}$ against D.F. if terms such as σ_{W} and σ_{C} are significant. It is apparent that some criterion must be established in order to identify solvents which are suitable for the present study, and for comparison purposes a 'reference' solvent in
interactions and σ_{C} is negligible. Seven organic solvents of widely varying polarity, in addition to n-hexane, were found which satisfy this criterion and these solvents were used.

Table 2 lists infinite dilution s.c.s. for the molecules
under investigation in these solvents, and plots of $\Delta_{\text {(solvent) }}$ against $\Delta_{\text {(hexane) }}$ are linear and of high precision. The results are best considered in terms of the relationship $\Delta_{\text {(sotent) }}=m \Delta_{\text {(hexane) }}+C$ and Table 3 shows the

Table 3
Comparison of s.c.s. in a variety of solvents with the corresponding s.c.s. in n-hexane by means of the relation$\operatorname{ship} \Delta_{(\text {solvent })}=m \Delta_{\text {(hexane) }}+C$

Standard

Solvent	m	C	(p.p.m. in abscissa)	Correlation coefft.
p-X-Fluorobenzenes				
CCl_{4}	1.0114	0.9687	0.0982	0.9999
CHCl_{3}	1.0707	$4 \cdot 1428$	$0 \cdot 4734$	0.9976
CHBr_{3}	1.0492	$3 \cdot 4745$	$0 \cdot 4094$	0.9981
$\mathrm{CH}_{2} \mathrm{I}_{2}$	1.0547	$3 \cdot 9996$	$0 \cdot 3677$	0.9985
MeCN	1.0949	$4 \cdot 5657$	$0 \cdot 4481$	0.9980
4-X-3'-Fluoro-trans-stilbenes				
CCl_{4}	$0 \cdot 8159$	-8.5159	$0 \cdot 0329$	0.9954
CHCl_{3}	$0 \cdot 6341$	-16.9307	0.0167	0.9980
CHBr_{3}	0.6738	-14.6077	0.0183	0.9979
$\mathrm{CH}_{2} \mathrm{I}_{2}$	$0 \cdot 6354$	-16.3397	0.0170	0.9982
MeCN	$0 \cdot 3482$	$-32 \cdot 0689$	0.0186	0.9908
4-X-4'-Fluoro-trans-stilbenes				
CCl_{4}	$1 \cdot 1057$	$1 \cdot 2443$	0.0143	0.9999
CHCl_{3}	0.9137	-3.1912	0.0844	0.9972
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0 \cdot 8632$	-5.6601	$0 \cdot 0384$	$0 \cdot 9994$
MeCN ${ }^{\text {* }}$	0.7305	-12.8445	$0 \cdot 0245$	$0 \cdot 9995$
$\mathrm{Me}_{2} \mathrm{~N} \cdot \mathrm{CHO}$	$0 \cdot 7563$	-11.7323	0.0510	0.9985

* Excluding data for compounds in which $\mathrm{X}=\mathrm{NH}_{2}$.
results of applying a least-squares treatment to fit the data to this equation; the standard deviations and correlation coefficients show that the linear relationship is of high precision in all cases. The sensitivity of this method of detecting chemical interactions with solvent is apparent from the fact that in acetonitrile as solvent the two amino-substituted stilbenes show great deviation from the linear plot, and it is only when these compounds are eliminated from the results that a satisfactory degree

Table 4
The dielectric function for fluorobenzenes and fluorostilbenes in a variety of solvents

Solvent	Dielectric constant	Dielectric function for fluorobenzenes	Dielectric function for
fluorostilbenes			

of precision occurs. In order to calculate the values of A [equation (2)] the dielectric functions for the various solvents are plotted against the corresponding s.c.s. for a given compound and A is evaluated from the slope.
${ }^{9}$ (a) K. B. Everard, L. Kumar, and L. E. Sutton, J. Chem. Soc., 1951, 2807; (b) A. E. Lutskii, L. Ya Malkes, E. M. Obukhova, and A. I. Timchenko, Zhur. fiz. Khim., 1963, 37, 1076; (c) A. J. Boulton, G. M. Glover, M. Hely Hutchinson, A. R. Katritzky, D. J. Short, and L. E. Sutton, J. Chem. Soc. (B), 1966, 822.

Table 4 lists the dielectric functions of the various solvents for the two different types of molecule employed, and Table 5 shows a least-squares analysis of the linear correlations together with the calculated values of A. Most correlations are of an acceptably high standard, with the exception of those for p-fluorotoluene and 4-methyl-4'-fluoro-trans-stilbene in which the small observed solvent effects (owing to the small difference between dipole moments of the molecules and that of the unsubstituted molecule) lead to large errors. The data for p-fluoronitrobenzene also show considerable scatter.

If the results for these compounds are ignored, then it is apparent that the data for the stilbenes form a consistent set. In 4-X-3'-fluoro-trans-stilbenes, an average

Table 5
The correlation of dielectric function with s.c.s. and the calculated values of A [from equations (9) and (10)]

4-X-3'-Fluoro-trans-stilbenes

NH_{2}	-2.0132	$0 \cdot 0535$	0.9340	$-2.06 \ddagger$	$+56 \cdot 3 \pm 5 \cdot 5$
OMe	-3.3803	$0 \cdot 0722$	0.9227	-1.44	$+48 \cdot 2 \pm 6.7$
OEt	-4.0916	$0 \cdot 0417$	0.9749	-1.65	$+34 \cdot 9 \pm 4 \cdot 2$
Me	-4.3918	$0 \cdot 1050$	$0 \cdot 8281$	-0.47	+ $114 \cdot 1 \pm 48.5$
F	$3 \cdot 5018$	$0 \cdot 0909$	$0 \cdot 8917$	$+1.49$	$+45 \cdot 1 \pm 6 \cdot 1$
Cl	2.7533	0.0708	0.9259	+1.71	$+50.0 \pm 5.9$
Br	$3 \cdot 0835$	$0 \cdot 0494$	$0 \cdot 9647$	+1.83	$+41 \cdot 7 \pm 4 \cdot 6$
I	$3 \cdot 1431$	$0 \cdot 0400$	0.9769	+1.78	$+42 \cdot 1+4.7$
NO_{2}	$0 \cdot 8285$	$0 \cdot 0451$	0.9706	+4.63	$+61.4 \pm 3 \cdot 3$

4-X-4'-Fluoro-trans-stilbenes

value of $A=(47.5 \pm 4.5) \times 10^{-12}$ e.s.u. can be calculated while for the $4-\mathrm{X}-4^{\prime}$-fluoro-trans-stilbene the value is $35 \cdot 1 \pm 2.0$ p.p.m. This difference is probably not real, for in order to calculate the field component along the $\mathrm{C}-\mathrm{F}$ bond direction in the $4-\mathrm{X}-3$ '-fluoro-derivatives it is necessary to assume that the bond is at an angle of 60° to the field direction which is presumed to be at an
${ }^{10}$ (a) A. L. McLellan, 'Tables of Experimental Dipole Moments,' W. H. Freeman, London, 1966; (b) D. C. Colinese, J. Hall, and D. A. Ibbotson, J. Chem. Soc., 1962, 983; (c) M. J. Aroney, K. E. Calderbank, and R. J. W. LeFèvre, J. Chem. Soc. (B), 1969, 159; (d) M. D. Rudolph and M. Seiler, Z. Naturforsch., 1965, 20a, 1682.
angle of 60° to the central olefinic bond; a decrease in this, to 50°, will produce almost exact agreement between the two sets of data. No variation in the value of A with the nature of the distant substituent group is discernible.

The data for p-X-fluorobenzenes are somewhat different, for the value of A appears to depend upon the nature of the X substituent. For the compounds in which X is $\mathrm{NH}_{2}, \mathrm{OH}$, or OMe A has the value $-\mathbf{3 0 . 5} \pm$ 2.5 p.p.m., while for those cases where X is $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, or $\mathrm{NO}_{2} A$ ranges from $+15.5 \times 10^{-12}$ e.s.u. for $\mathrm{X}=\mathrm{Cl}$ to $+38.5 \times 10^{-12}$ e.s.u. for $\mathrm{X}=\mathrm{NO}_{2}$.

Since A appears to vary with the nature of the substituent, then equation (10) is inappropriate and the more explicit form (11) must be used. When $\mathrm{X}=\mathrm{F}$,

$$
\begin{align*}
& \Delta^{\mathrm{X}}{ }_{\text {obs }}(\text { benzenes }) \\
& \quad=3.2428 \times 10^{4}\left(A_{H} \mu_{H}-A_{\mathrm{X}} \mu_{X}\right)(\text { D.F. }) \tag{11}
\end{align*}
$$

$\mu_{\mathrm{X}}=0$; the data for p-difluorobenzene can thus be used to evaluate A_{H}, and from the slope listed in Table 5 a value of $+24.2 \times 10^{-12}$ e.s.u. is obtained. This can be used in conjunction with the remaining data and the values of μ_{X} in Table 6 to evaluate A_{X} for the different situations; these values are in Table 6.

The variation in the calculated values of A indicates that the reaction field model breaks down for para-

Table 6
The apparent values of A for some para-substituted fluorobenzenes calculated from equation (11)

Substituent	μ / D	$10^{12} \mathrm{~A} / \mathrm{e} . \mathrm{s} . \mathrm{u}$.
NH_{2}	-2.52	-26.32 ± 2.08
OH	-2.31	-28.16 ± 2.42
OMe	-2.08	-26.26 ± 2.52
H	-1.35	$+24.2 \pm 3.58$
Cl	+0.97	$+70.95 \pm 14.62$
Br	+0.52	$+130.46 \pm 50.10$
I	+0.83	$+79.27 \pm 19.02$
NO_{2}	+2.72	$+69.67 \pm \mathbf{4 5}$

In Tables 5 and 6 the 'error' quoted for the estimated values of A are based upon an experimental uncertainty in the dipole moment of $\pm 0.2 \mathrm{D}$; in the case of p-fluoronitrobenzene the greatest error is in the slope of the correlation and this is the basis for the estimated error in A.
substituted fluorobenzenes, although it can be used successfully for the corresponding stilbenes. Apparently, the increased proximity of the two substituent groups makes the solvent polarisation take a more complex form (possibly owing to the increased contribution from molecular quadrupoles ${ }^{\mathbf{3}}$), which is not well described by the present approximations.

We acknowledge helpful comments by the Referees, and thank the S.R.C. for a maintenance grant (to I. R. A.).

[^0]: ${ }^{1}$ P. Laszlo, ' Progress in Nuclear Magnetic Resonance Spectroscopy,' vol. 3, ed. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, Pergamon Press, Oxford, 1967.
 ${ }^{2}$ A. D. Buckingham, T. Schaefer, and W. G. Schneider, J. Chem. Phys., 1960, 32, 1227.
 ${ }^{3}$ A. D. Buckingham, Canad. J. Chem., 1960, 38, 300.

[^1]: ${ }^{4}$ J. W. Emsley and L. Phillips, Mol. Phys., 1966, 11, 437.
 ${ }^{5}$ H. J. Bernstein and L. Petrakis, J. Chem. Phys., 1963, 37, 2731; 1963, 38, 1562.
 ${ }_{6}$ I. R. Ager, L. Phillips, T. J. Tewson, and V. Wray, following paper.

[^2]: ${ }^{7}$ P. N. Jenkins and L. Phillips, J. Phys. (E), 1971, 4. 530.
 8 P. Diehl and R. Freeman, Mol. Phys., 1961, 4, 39.

